MATH4010 Functional Analysis

Homework 6 suggested Solution

Question 1. Let X be a Hilbert space and let $T : X \to X$ be a bounded operator. Show that $\lim_{\lambda\to\infty} \left\| (T-\lambda)^{-1} \right\| = 0$, where $\lambda > \|T\|$.

Solution:

Let $\lambda > ||T||$, then $(T - \lambda)$ is invertible. Note that

$$\frac{1}{\lambda}(T-\lambda)\left(1+\frac{1}{\lambda}T+(\frac{1}{\lambda}T)^2+\ldots+(\frac{1}{\lambda}T)^n\right)=(\frac{1}{\lambda}T)^{n+1}-I$$

Define $S_n(\lambda) := -\frac{1}{\lambda} \sum_{k=0}^n \left(\frac{1}{\lambda}T\right)^k$, then we have

$$(T - \lambda)S_n(\lambda) = I - (\frac{1}{\lambda}T)^{n+1}$$
(1)

Since $||T|| < \lambda$, the sequence $\{S_n(\lambda)\}_n$ is absolutely convergent, which implies $\{S_n(\lambda)\}$ normly converges in Hirlbert space X. Denote $S(\lambda) = \lim_{n \to \infty} S_n(\lambda)$, then it follows from (1) that

$$(T - \lambda)S(\lambda) = I,$$
 $S(\lambda)(T - \lambda) = I.$

Thus $(T - \lambda)^{-1} = S(\lambda)$. Notice that

$$\begin{split} \|S(\lambda)\| &= \| -\frac{1}{\lambda} \sum_{n=0}^{\infty} (\frac{1}{\lambda}T)^n \| \le \frac{1}{\lambda} \sum_{n=0}^{\infty} \|(\frac{1}{\lambda}T)^n\| \\ &\le \frac{1}{\lambda} \sum_{n=0}^{\infty} \|\frac{1}{\lambda}T\|^n \\ &\le \frac{1}{\lambda} \frac{1}{1-\|\frac{1}{\lambda}T\|} \\ &= \frac{1}{\lambda-\|T\|}. \end{split}$$

Therefore $\lim_{\lambda \to \infty} \|(T - \lambda)^{-1}\| = 0$, which follows by $\lim_{\lambda \to \infty} \frac{1}{\lambda - \|T\|} = 0$.

Question 2. Using the notation given as in Question (1), let $f(t) := t^n + a_{n-1}t^{n-1} + \cdots + a_1t + a_0$ be a complex polynomials. Put $f(T) := T^n + a_{n-1}T^{n-1} + \cdots + a_1T + a_0I \in \mathcal{L}(X)$.

(i) Show that f(T) is invertible in $\mathcal{L}(X)$ if and only if $\alpha \notin \sigma(T)$ for all roots α of f. (Hint: use the Fundamental Theorem of Algebra).

(ii) Let f be a polynomial as in Part (i). Show that if $\lambda_0 \in \sigma(T)$, then $f(\lambda_0) \in \sigma(f(T))$.

Solution:

(i) By Fundamental Theorem of Algebra, $f(t) = \prod_{k=1}^{n} (t - \alpha_k)$, where $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$ are roots of f. Hence, we have $f(T) = \prod_{i=1}^{n} (T - \alpha_i I)$. Since X is Hilbert space, a complex number $\alpha \notin \sigma(T)$ iff $(T - \alpha)$ is linear isomorphism (see **Remark 16.2**). Suppose f(T) is invertible, then for any $1 \leq i \leq n$,

$$I = f(T)^{-1} \cdot f(T) = f(T)^{-1} \cdot \prod_{k=1, k \neq i}^{n} (T - \alpha_k I) \cdot (T - \alpha_i I); \qquad (2)$$

$$I = f(T) \cdot f(T)^{-1} = (T - \alpha_i I) \prod_{k=1, k \neq i}^n (T - \alpha_k I) \cdot f(T)^{-1}.$$
 (3)

It follows that $(T - \alpha_i I)$ is injective and surjective by (2) and (3), respectively. Therefore $\alpha_i \notin \sigma(T)$, for $1 \leq i \leq n$.

Conversely, suppose $\alpha_i \notin \sigma(T)$ for $1 \leq i \leq n$. Then $(T - \alpha_i I)$ is invertible and $(T - \alpha_i I)^{-1} \in \mathcal{L}(X)$. Notice that

$$f(T) \cdot \prod_{i=1}^{n} (T - \alpha_i I)^{-1} = \prod_{i=1}^{n} (T - \alpha_i I) \prod_{i=1}^{n} (T - \alpha_i I)^{-1} = I;$$
$$\prod_{i=1}^{n} (T - \alpha_i I)^{-1} \cdot f(T) = \prod_{i=1}^{n} (T - \alpha_i I)^{-1} \prod_{i=1}^{n} (T - \alpha_i I) = I.$$

Therefore f(T) is invertible and $f(T)^{-1} = \prod_{i=1}^{n} (T - \alpha_i I)^{-1}$.

(ii) Let f be a polynomial as in Part (i) and $\lambda_0 \in \sigma(T)$. Define $g(t) = f(t) - f(\lambda_0)$. From 2(i) what has already been proved, we see that g(T) is not invertible. Notice that $g(T) = f(T) - f(\lambda_0)I$, we have $f(\lambda_0) \in \sigma(f(T))$.